
1

1

Enhancements in
Servlet 2.4 (in J2EE 1.4)

Let's talk about enhancements made in Servlet 2.4. I must say upfront, the
things that are added to 2.4 are not as significant as the ones added in
Servlet 2.3. But there are a few things you should be aware of.

11/03/2003

2

2

Sang Shin

sang.shin@sun.com
www.javapassion.com

Java™ Technology Evangelist
Sun Microsystems, Inc.

11/03/2003

3

3

Disclaimer & Acknowledgments
? Even though Sang Shin is a full-time employees of Sun

Microsystems, the contents here are created as his own personal
endeavor and thus does not reflect any official stance of Sun
Microsystems.

? Sun Microsystems is not responsible for any inaccuracies in the
contents.

? Acknowledgements
– Many slides are borrowed from “Servlet 2.4 and JSP 2.0

specification” JavaOne 2003 presentation by Mark Roth of Sun
Microsystems

11/03/2003

4

4

Revision History
? 10/13/2003: version 1: created by Sang Shin
? Things to do

11/03/2003

S u n ™
Tech
Days

5

Request Listeners

? Complete the event notification model
? ServletRequestListener
? ServletRequestAttributeListener

Web App

Servlet

ContextListenerS
e

s
s

io
n

L
is

te
n

e
r

RequestListener

C
li
e
n

t

Servlet 2.3, which is a pervious version of Servlet, introduced the idea
of context and session listeners, classes that could observe when a
context or session was initialized or about to be destroyed, and
when attributes were added or removed to the context or session.
Servlet 2.4 expands the model to add request listeners, allowing
developers (or more likely tool vendors) to observe as requests are
created and destroyed, and as attributes are added and removed
from a request.

So now there could be 3 different listeners in your web-tier
application, context listener, sessionlistener, and now servletrequest
listener.

11/03/2003

Sun™
Tech
Days

6

Filter under Request Dispatcher

? Invoke Filter under RequestDispatcher
 <filter-mapping>
 <filter-name>DispatcherFilter</filter-name>
 <url-pattern>/products/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>

? Could be
? REQUEST, FORWARD, INCLUDE, ERROR or

any combination of them

One of the ambiguous areas in previous version of Servlet is in regard to the
interaction between the RequestDispatcher and filters. Should filters
invoke for forwarded requests? Included requests? What about for URIs
invoked via the <error-page> mechanism? Before Servlet 2.4, these
questions were left as open issues.

Now Servlet 2.4 makes it a developer's choice. There's a new <dispatcher>
element in the deployment descriptor with possible values REQUEST,
FORWARD, INCLUDE, and ERROR. You can add any number of
<dispatcher> entries to a <filter-mapping> like above.

This example indicates the filter should be applied to requests directly from
the client as well as forward requests. Adding the INCLUDE and ERROR
values also indicates that the filter should additionally be applied for
include requests and <error-page> requests. Mix and match for what you
want. If you don't specify any <dispatcher> elements, the default is
REQUEST.

11/03/2003

Sun™
Tech
Days

7

SingleThreadModel Deprecated

? Interface SingleThreadModel
? Confusing
? Does not solve thread safety issue completely

? Session attribute
? Static variable

? Recommendation
? Avoid using an instance variable
? Synchronize the code block

In Servlet 2.4, SingleThreadModel is deprecated for a good reason mostly because
it does not really provide thread safety. For example, you still have to manage
synchronized access to session attribute and static variables.

So recommendation is avoid the usage of instance variables and if you do, use
sychronized code block.

11/03/2003

Sun™
Tech
Days

8

Internationalization

? New elements in Deployment Descriptor
 <locale-encoding-mapping-list>
 <locale-encoding-mapping>
 <locale>ja</locale>
 <encoding>Shift_JIS</encoding>
 </locale-encoding-mapping>
 </locale-encoding-mapping-list>

? New methods in ServletResponse
? SetCharacterEncoding()

? no more setContentType("text/html; charset=UTF-8")
? GetContentType()

? useful since ContentType now can be more dynamically
set

Also in Servlet 2.4, the ServletResponse interface (and the ServletResponseWrapper) adds two new methods:
 * setCharacterEncoding(String encoding): Sets the response's character encoding. This method provides an alternative to

passing a charset parameter to setContentType(String) or passing a Locale to setLocale(Locale). This method has no effect if
called after getWriter() has been called or if the response has committed. For a list of acceptable Internet charsets, see
Resources.

 * getContentType(): Returns the response's content type. This may include a charset parameter set by either
setContentType(), setLocale(), or setCharacterEncoding(). If no type has been specified, the method returns null.

The setCharacterEncoding() method pairs with the preexisting getCharacterEncoding() method to provide an easy way to
manipulate and view the response's character encoding (charset). You can now avoid setting the charset via the awkward
setContentType("text/html; charset=UTF-8") call.

The new getContentType() method pairs with the preexisting setContentType() method to expose the content type you've
assigned. Formerly, this wouldn't have been too interesting, but now the type might be dynamically set with a combination of
setContentType(), setLocale(), and setCharacterEncoding() calls, and this method provides a way to view the generated type
string.

So which is better, setLocale() or setCharacterEncoding()? It depends. The former lets you specify a locale like ja for Japanese
and lets the container handle the work of determining an appropriate charset. That's convenient, but, of course, many charsets
might work for a given locale, and the developer has no choice in the matter. The latter method provides a new, easy way to
choose a specific charset, letting you override the container's choice of Shift_JIS with EUC-JP, for example.

However, the story doesn't end there. Servlet 2.4 also introduces a new <locale-encoding-mapping-list> element in the web.xml
deployment descriptor to let the deployer assign locale-to-charset mappings outside servlet code. It looks like this:

<locale-encoding-mapping-list>
 <locale-encoding-mapping>
 <locale>ja</locale>
 <encoding>Shift_JIS</encoding>
 </locale-encoding-mapping>
 <locale-encoding-mapping>
 <locale>zh_TW</locale>
 <encoding>Big5</encoding>
 </locale-encoding-mapping>
</locale-encoding-mapping-list>
Now within this Web application, any response assigned to the ja locale uses the Shift_JIS charset, and any assigned to the

zh_TW Chinese/Taiwan locale uses the Big5 charset. These values could later be changed to UTF-8 when it grows more
popular among clients. Any locales not mentioned in the list will use the container-specific defaults as before.

11/03/2003

9

9

 Resources

11/03/2003

10

10

Resources
? [1] Java Web Services Developer Pack Tutorial

– java.sun.com/webservices/downloads/webservicespack.html
– java.sun.com/webservices/downloads/webservicestutorial.html

? [2] More Servlets and JavaServer Pages (written
by Marty Hall)

This is the resource page.

11/03/2003

11

11

Live your life
with Passion!

11/03/2003

